Name	Class	Date

Conceptual Biology

Chapter 6: Inheritance Comparing Mitosis and Meiosis		
1. Give some examples of when org	ganisms use mitosis.	
		_
2. a. When do organisms use meio	ocic?	
2. a. when do organishis use melo	2010:	
b. What kinds of cells are produ	aced through meiosis?	
Circle the correct answers:		
3. a. In meiosis, the number of cell	ls produced is [one] [two] [three] [four].	
In mitosis, the number of cell	s produced is [one] [two] [three] [four].	
b. During meiosis, cells produce	ed are [haploid] [diploid].	
During mitosis, cells produce	ed are [haploid] [diploid].	
c. The cells produced are [diffe	erent from one another [identical] in meiosis.	
-		
The cells produced are [diffe	erent from one another] [identical] in mitosis.	
d. Crossing over happens during	g [mitosis] [meiosis].	

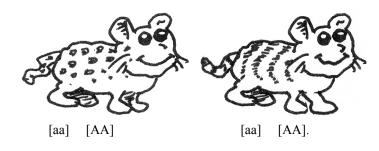
Name	Class
Harric	Olass

Conceptual Biology

Date_

Chapter 6: Inheritance

Dominant and Recessive Traits


1. Some small woodland creatures have either spots or stripes. Fur pattern is determined by a single gene. The striped phenotype is **dominant** and the spotted phenotype is **recessive**.

[spotted]

[striped].

Both the woodland creatures shown below are homozygotes.

[spotted]

2. The woodland creature below is a **heterozygote**. Does it have spots or stripes? Sketch the woodland creature's fur pattern and circle the genotype and phenotype.

[striped]

Genotype is

Genotype is

Phenotype is

[aa] [AA] [Aa].

Phenotype is

[spotted] [striped].

Fill in the blanks:

3. Here are two more woodland creatures. Which of the following must be a **homozygote**? Which could be either a **homozygote** or a **heterozygote**?

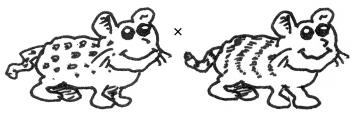
So we see that the spotted one must be a [homozygote] [heterozygote],

since you have to have two recessive alleles to have spots. The striped one is

[a homozygote] [a heterozygote] [either a homozygote or heterozygote].

Name		
Maille	;	

Class_____


Date

Conceptual Biology

Chapter 6: Inheritance

Inheritance Patterns

1. Suppose you breed two woodland creatures together. One individual has genotype aa, and the other has genotype AA. Draw the cross below:

Genotype is

[aa]

Phenotype is

[spotted] [striped]

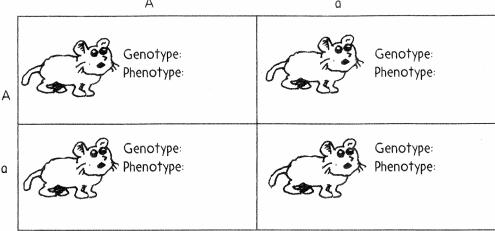
[spotted] [striped].

2. What are the progeny like?

Genotype is

[aa]

[Aa] and phenotype is [spotted] [striped].


Fill in the table below:

3. Now you breed two of the progeny from Question 2 together. What will their offspring look like?

Allele received from father

a

Allele received from mother

So, the offspring include woodland creatures that are

[spotted] [striped] [both spotted and striped].

The offspring are found in a ratio of ______ striped: _____ spotted.

Nama	Class	Data
Name	Class	Date
		Dato

Conceptual Biology

Chapter 6: Inheritance

Variable Traits, Heritable Traits

1. Of the human traits listed below, put a **V** for variable traits and put an **H** for heritable traits. (Note: Some traits are both variable and heritable.)

a. age		

- b. eye color
- c. number of toes
- d. curliness or straightness of hair
- e. presence or absence of dimples
- f. upright posture
- g. owning versus not owning a dog
- h. height
- 2. Which traits above have the potential of evolving via natural selection?

